Vũ trụ là toàn bộ hệ thống không-thời gian trong nó chúng ta đang sống, chứa toàn bộ năng lượng hay vật chất. Môn học nghiên cứu vũ trụ, trên những khoảng cách lớn nhất có thể, là vũ trụ học, một môn khoa học kết hợp giữa vật lý và thiên văn.
Vũ trụ học, về cuối thế kỷ 20, được phân làm hai nhánh chính: thực nghiệm (vũ trụ học thực nghiệm) và lý thuyết (vũ trụ học lý thuyết). Các nhà vũ trụ học thực nghiệm đã gần như từ bỏ hy vọng có thể quan sát được toàn bộ vũ trụ; trong khi đó, các nhà vũ trụ học lý thuyết vẫn phát triển các mô hình cho toàn bộ vũ trụ, bất chấp khả năng các lý thuyết này sẽ không có đủ bằng chứng thực nghiệm để kiểm chứng.
Các từ "vũ trụ quan sát được", "vũ trụ nhìn thấy" là dành cho vũ trụ mà con người có thể cảm nhận được qua các phương tiện thực nghiệm.
Lý thuyết Vụ Nổ Lớn
Bài chi tiết: Vụ Nổ Lớn
Theo thuyết Vụ Nổ Lớn, vũ trụ bắt nguồn từ một trạng thái vô cùng đặc và vô cùng nóng (điểm dưới cùng). Từ đó, không gian đã mở rộng cùng với thời gian và làm cho các thiên hà di chuyển xa nhau hơn.Xem thêm Lịch sử vũ trụ, Tuổi vũ trụ
Từ quan sát dịch chuyển đỏ của các thiên hà chúng ta có bằng chứng rằng vũ trụ đang nở ra, theo định luật Hubble. Quay ngược về quá khứ, ta sẽ gặp đến một điểm kỳ dị hấp dẫn, một khái niệm mang tính chất toán học, có thể không thực sự trùng với sự thật. Đây là cơ sở để hình thành lý thuyết Vụ Nổ Lớn, lý thuyết được công nhận nhiều nhất trong vũ trụ học ngày nay. Lý thuyết này cộng với các tiến bộ trong quan sát (Máy đo dị hướng vi sóng Wilkinson, WMAP, của NASA) đã ước lượng tuổi vũ trụ vào khoảng 13,7 tỷ (13,7 × 109) năm, với sai số cỡ 1% (± 200 triệu năm). Độ chính xác này dựa trên giả thuyết là các lý thuyết dùng trong xử lý kết quả đo đạc là đúng. Nhiều phép đo khác cho những kết quả dao động từ 10 đến 20 tỷ năm.
Các quan sát nền tảng của thuyết Vụ Nổ Lớn gồm có:
Các thiên hà ở càng xa càng chuyển động ra xa nhanh hơn.
Phông vi sóng vũ trụ, có nhiều khả năng là các bức xạ tàn dư từ thời kỳ đầu của Vụ Nổ Lớn, nay đã bị dịch chuyển đỏ đến mức có tần số của chúng nằm trong vùng vi sóng. Nền bức xạ này rất đẳng hướng có thể giải thích bởi lạm phát vũ trụ ngay sau Vụ Nổ Lớn.
Tỷ lệ các nguyên tố nặng tăng dần qua các thế hệ sao nhờ tổng hợp trong các phản ứng năng lượng cao.
Phân bố và tiến hóa về hình dáng và thành phần hóa học của các thế hệ thiên hà.
[sửa] Kích thước của vũ trụ và vũ trụ quan sát được
Xem thêm Hình dáng vũ trụ, Cấu trúc vĩ mô của vũ trụ
Hình dáng vũ trụ là một câu hỏi quan trọng trong vũ trụ học.
Câu hỏi đầu tiên là vũ trụ của chúng ta "phẳng" và tuân thủ hình học Euclid trên khoảng cách vĩ mô, hay không? Hiện nay, đa số các nhà vũ trụ học tin là vũ trụ quan sát được khá phẳng, chỉ có những chỗ không-thời gian méo địa phương do sự tập trung mật độ vật chất cao bất thường (như ở hố đen). Nhận xét này được củng cố bởi bằng chứng thực nghiệm của WMAP, một thí nghiệm nhìn vào "dao động" của phông vi sóng vũ trụ.
Câu hỏi thứ hai là vũ trụ của chúng ta có đa liên thông hay không? Theo mô hình của Vụ Nổ Lớn, vũ trụ của chúng ta không có biên giới, nhưng vẫn có thể chỉ chứa lượng không gian hữu hạn. Điều này tương tự như bề mặt của hình cầu: bề mặt này không có biên giới, nhưng diện tích bề mặt hữu hạn (4πR2); chúng ta đi trên bề mặt này theo một "đường thẳng" thì rồi sẽ lại vòng về chỗ cũ. Ví dụ ba chiều tương đương gọi là "không gian cầu" khám phá bởi Bernhard Riemann, với thể tích (2π2R3). Nếu vũ trụ của ta cũng tương tự vậy, khi ta đi theo "đường thẳng", ta sẽ trở lại điểm xuất phát sau khi đã đi hết "chu vi" của vũ trụ. Điều này cũng dẫn đến một kết quả thú vị là ta có thể nhìn thấy nhiều ảnh của cùng một ngôi sao, do ánh sáng từ nó có thể đi nhiều vòng quanh vũ trụ trước khi đến mắt ta (tương tự như nhiều ảnh của một ngọn nến nằm giữa hai gương song song). Câu hỏi này còn chưa được trả lời một cách dứt khoát, nhưng với kết quả về vũ trụ phẳng, khả năng về một vũ trụ đa liên thông là thấp
Bài chi tiết: Tương lai của vũ trụ và Giả thiết về sự kết thúc của vũ trụ
Phụ thuộc vào mật độ vật chất và năng lượng trong vũ trụ của chúng ta mà nó sẽ tiếp tục nở ra mãi mãi hoặc nở ra chậm dần do lực hấp dẫn rồi sụp đổ trở lại, tạo thành Vụ Sập Lớn. Các bằng chứng quan sát hiện nay cho thấy mật độ vật chất trong vũ trụ không đủ lớn để giảm sự giãn nở, mà thậm chí sự giãn nở này sẽ tăng tốc mãi mãi.
Năm 1924, Hubble (1889-1935) nhờ kính thiên văn dài 2,5m trên núi Wilson, lần đầu tiên phát hiện được các sao xepheit trong tinh vân Andromede đã tính toán được khoảng cách của chúng và xác lập được rằng thiên hà này ở ngoài dải Ngân hà. Điều này chứng minh rằng ngoài thiên hà của chúng ta còn tồn tại các thiên hà khác nằm ngoài thiên hà của chúng ta. Năm 1928, ông phát hiện ra rằng các thiên hà có phổ dịch về phía đỏ và khi chấp nhận đó là do hiệu ứng Doppler và từ những quan sát của mình, ông đưa ra một qui luật các thiên hà chuyển động ra xa nhau, thiên hà ở càng xa thì chuyển động càng nhanh: V=H.d (V là vận tốc chạy ra xa của một thiên hà ở khoảng cách d; H, hằng số Hubble, nó có giá trị khoảng 25km/s đối với mỗi triệu năm ánh sáng). Nếu thuyết tương đối là đúng thì điều đó có nghĩa là Vũ trụ đang giãn nở. Đa số các nhà vật lý thiên văn ngày nay đều thừa nhận điều này. Theo những quan sát được thực hiện năm 1998 tại Đại học Seattle, thì vũ trụ giãn nở mãi mãi và được gia tốc.